

Chapter 12 Conic Sections Section 12-2 Circle and Ellipse

Ellipse

Def: the set of all points such that the *sum* of the distances from two points (called foci) is constant

> x^2 and y^2 have same sign but x and y dilations are different (x radius and y radius)

- longer radius is called major radius (a)
- shorter radius is called **minor radius** (b)
- foci (c) are on the major axis

$$\left(\frac{x}{3}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$$

x radius = 3 y radius = 5 center (0,0)

Def: the set of all points equidistant from a center point

Unit circle
$$x^2 + y^2 = 1$$

Translations change the center point $(x-2)^2 + (y+3)^2 = 1$

Center
$$(2,-3)$$

Dilations change the radius

$$\left(\frac{x+3}{5}\right)^2 + \left(\frac{y-1}{5}\right)^2 = 1$$

Graph $\left(\frac{x+4}{6}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 1$

center (-4,-1) x rad = 6 yrad = 3

from a point

The distance from the focus is directly proportional to its distance from the directrix. This proportionality constant is called the eccentricity. "e"

The closer e is to 0, the rounder the ellipse is (e = 0 is a circle)

For an ellipse, 0 < e < 1 The closer it is to 1, the longer and more "eccentric" the ellipse is.

$$e = \frac{c}{a} = \frac{focal \, radius}{major \, radius}$$

If it's an ellipse, find e. Circle or Ellipse?

1.
$$\left(\frac{x-2}{5}\right)^2 + \left(\frac{y-4}{2}\right)^2 = 1$$
 ellipse
$$0 = 5$$

$$5 = 2$$

$$0 = 121$$

$$b = a$$

$$C = \sqrt{a}$$

$$e = \frac{\sqrt{a}}{5}$$

3.
$$\frac{5x^2 + 7y^2 = 35}{35}$$
 ellipse

$$\frac{\chi^2}{7} + \frac{y^2}{5} = 1$$

$$\left(\frac{X}{17}\right)^2 + \left(\frac{Y}{15}\right)^2 = 1$$

$$a = 17$$
 $b = 15$
 $(17)^2 = (15)^2 + C^2$

$$\frac{\sqrt{12} = C}{e = \frac{\sqrt{12}}{\sqrt{7}}} \quad \text{foci} \left(0 \pm \sqrt{12}, 0\right)$$

$$2. \qquad \frac{x^2}{9} + \frac{y^2}{9} = 1$$

$$\left(\frac{X}{3}\right)^2 + \left(\frac{4}{3}\right)^2 = 1$$

4.
$$3x^2 + 3y^2 = 12$$

$$\frac{\chi^2}{4} + \frac{\chi^2}{4} = 1$$

$$\left(\frac{X}{2}\right)^2 + \left(\frac{Y}{2}\right)^2 = 1$$

