## Section 7-4 Logarithms

We know that  $2^2 = 4$  and  $2^3 = 8$ . However, for what value of x does  $2^x = 6$ ? To find the exact value, mathematicians invented *logarithms*.

Let *b* and *x* be positive numbers,  $b \ne 1$ . The logarithm of x with base b is

$$\log_b x = y$$
 if and only if  $b^y = x$ 

It is read as "log base b of x".

\*\*Logarithms and Exponential Functions are inverses of each other\*\*

$$y = 2^x$$

its inverse

$$x = 2^y$$
 or  $\log_2 x = y$ 

| 650   |          |
|-------|----------|
| X     | <u>y</u> |
| -2    | 1/4      |
| -1    | 1/2      |
| 0     | 1        |
| 1     | 2        |
| 2     | 4        |
| Alex. |          |
|       |          |



| X   | y  |
|-----|----|
| 1/4 | -2 |
| 1/2 | -1 |
| 1   | 0  |
| 2   | 1  |
| 4   | 2  |
|     |    |

Rewrite as an exponential function.

1. 
$$\log_3 9 = 2$$

2. 
$$\log_5 \frac{1}{25} = -2$$

$$5^{-2} = \frac{1}{3}$$

Rewrite an a logarithm.

3. 
$$4^3 = 64$$

4. 
$$10^4 = 10,000$$

The log with base 10 is called the <u>common logarithm</u>. It is written  $\log_{10} x$  or  $\log x$ . The log with base e = 2.7182... is called the <u>natural logarithm</u>. It can be written log<sub>e</sub> x but is more often referred to as

Let b, u, and v be positive numbers such that  $b \neq 1$ .

## **Product Property**

$$\log_b uv = \log_b u + \log_b v$$

$$\log_5 21 = \log_5 3 + \log_5 7$$

Quotient Property 
$$\log_b \frac{u}{v} = \log_b u - \log_b v$$

Example: 
$$\log_5 \frac{3}{7} = \log_5 3 - \log_5 7$$

$$\log_b u^n = n \log_b u$$

Example: 
$$\log_5 49 = \log_5 7^2 = 2\log_5 7$$

Demonstrate numerically the property of logarithms.

5. 
$$\ln(7 \cdot 8) = \ln 7 + \ln 8$$
  
 $\ln 56 = 1.9459 + 2.0794$   
 $4.025 = 4.025$ 

Fill in the blank.

6. 
$$\log 5 + \log 8 = \log 40$$

7. 
$$\ln 4 - \ln 20 = \ln \frac{4}{20} \ln \frac{1}{5}$$

8. 
$$\log 49 = 2 \log 7$$

9. 
$$\log 100 = 2$$

## CHANGE-OF-BASE formula

$$\log_c u = \frac{\log u}{\log c}$$

or

$$\log_c u = \frac{\ln u}{\ln c}$$

$$\log_3 7 = \frac{\log 7}{\log 3}$$

10. 
$$\log_2 6$$

11.

12.  $\log_{1/2} 7$ 

Solve.

13. 
$$4^x = 15$$

$$x \cdot \log 4 = \log 15$$
  
 $X = \frac{\log 15}{\log 4} \cdot \left[ X = 1,95 \right]$ 

14. 
$$3^{4x} = 27^{x+1}$$

$$(4x) \log 3 = (x+1) \log 27$$
  
 $1.9085 x = 1.4314 x + 1.4314$   
 $4771 x = 1.4314$   
 $x = 3.08020 x = 3$ 

15. 
$$\log_5(x+6) + \log_5(x+2) = 1$$

$$\log_{5} (x+b)(x+a) = 1$$

$$5' = (x+b)(x+a)$$

$$5 = x^{2} + \log_{5} + 2x + 1 + 1 + 1$$

$$0 = x^{2} + 8x + 7$$

$$0 = (x+7)(x+1) \quad x = 7$$

16. 
$$\log_2(2x-1) - \log_2(x+2) = -1$$

$$\log_{2} \frac{2x-1}{x+2} = -1$$

$$2^{-1} = \frac{2x-1}{x+2}$$

$$\frac{1}{2} = \frac{2x-1}{x+2}$$

$$x+2 = 4x-2$$

$$4 = 3x$$

$$\frac{4}{3} = x$$

17. 
$$e^{2x} - 3e^x + 2 = 0$$

guadratic
$$\left(e^{x}\right)^{2} - 3\left(e^{x}\right) + 2 = 0$$

$$e^{x} = 2 \qquad e^{x} = 1$$

$$x = 0.6931$$
  $x = 0$