Friday, December 11 Logistics problems

1) A frozen steak has a temperature of $28^{\circ} \mathrm{F}$. It is placed in a room with a constant temperature of $70^{\circ} \mathrm{F}$. After 10 minutes, the temperature of the steak has risen to $35^{\circ} \mathrm{F}$.
a) What will the temperature of the steak be after 60 minutes?
b) How long will it take for the steak to thaw to a temperature of $45^{\circ} \mathrm{F}$?
2) Bacteria growing in a petri dish grow exponentially. After 15 minutes the dish has 200 cells, after 30 minutes the dish has 400 cells. If the dish can only hold 100,000 cells, how many bacteria cells will there be in 2 hours? 3 hours? How long will it take to reach 50,000 cells?
3) A pizza baked at $450^{\circ} \mathrm{F}$ is removed from the oven at 5 pm into a room that is a constant $70^{\circ} \mathrm{F}$. After 5 minutes, the pizza is at $300^{\circ} \mathrm{F}$.
a) At what time can you begin eating pizza if you want its temperature to be 135° ?
4) A soda room temperature at $72^{\circ} \mathrm{F}$ is placed in a refrigerator where the temperature is a constant $38^{\circ} \mathrm{F}$. The soda is $70.4^{\circ} \mathrm{F}$ after 7 minutes

Find the time it will take before the soda is $39^{\circ} \mathrm{F}$.

PROPERTIES: Logistic Functions

The logistic function is $y=\frac{c}{1+a e^{-b x}}$, where $a>0, \mathrm{~b} \neq 0, c>0$, and a, b, c are constants. The domain is all real numbers. The logistic function has:

- Two horizontal asymptotes: one at $y=0$ and another at $y=c$
- A point of inflection at $y=\frac{c}{2}$

