Chapter 14 Sequences and Series

Notes 14.2 Arithmetic and Geometric Sequences and Other Sequences

Find the next 3 terms of each sequence.

1. 3, 5, 7, ____, ____, ____

Formula:

2. 6, 12, 24, ____, ____, ____

Formula:

3. 3, 9, 27, _____, ____, ____

Formula:

4. 5, -2, -9, ____, ____,

Formula:

A <u>sequence</u> is function whose domain is the set of positive integers. n is the term number and t_n is the term value. (ex #1: the 1st term is 3 so n = 1 and $t_n = 3$)

<u>Arithmetic sequence</u>—each term is formed by *adding* a constant to the previous term. (the constant is called the **common difference**)

<u>Geometric sequence</u>—each term is formed by *multiplying* the previous term by a constant (called the **common ratio**)

- 5. a) Find the 100^{th} term, t_{100} , of the sequence 3, 5, 7, ...
 - b) Find the term number, n, that 105 is in the sequence 3, 5, 7, ...
- 6. a) Find the 100^{th} term, t_{100} , of the sequence 6, 12, 24, ...
 - b) Find the term number, n, that 786,432 is in the sequence 6, 12, 24, ...

7. You have \$40 saved for something. You take on a part-time job that pays \$13 per day. Each day you keep track of how much you have.

Days (n)	$\$$ or t_n
1	53
2	66
3	79
4	92

- a) What kind of sequence is this?
- b) How much money would you have after 3 months?
- c) How long would it take to save \$5000?
- 8. When you leave money in a savings account, the interest is compounded. Let's say you put \$1000 in an account for your baby when it is born and the interest is 6% per year (compounded once a year).
 - a) What kind of sequence is this? Write a formula.
 - b) Find the first 3 terms.
 - c) How much money would there be saved on the 18th birthday?
 - d) When would that person have \$10,000 saved?
- 9. Type of sequence: Geometric, arithmetic or neither?

n	t_n
1	6
2	12
3	20
4	30
5	42