Notes 14-3 Series and Partial Sums

A series is formed by adding the terms of a sequence.

Ex. Sequence 3, 5, 7, 9, ...

Formula: $t_n =$

Series
$$3 + 5 + 7 + 9 + ... + t_n$$

When you sum up part of the series, it is called a **partial sum**, S_n

Ex. The third partial sum is
$$S_3 = 3 + 5 + 7$$

 $S_3 = 15$

Find the 100^{th} partial sum, S_{100} of 3 + 5 + 7...

$$S_{100} = \sum_{n=1}^{100} 1 + 2n$$

Each series is either arithmetic or geometric. Find the indicated partial sum.

1.
$$97 + 131 + 165 + ...$$
, find S_{37}

2.
$$1000 + 900 + 810 + ...$$
, find S_{22}

$$S_n = \frac{n}{2}(t_1 + t_n)$$

$$S_n = t_1 \cdot \frac{1-r^n}{1-r}$$
 r is common ratio

The series is either arithmetic or geometric. Find n for the given partial sum.

3.
$$97 + 101 + 105 + ...$$
, find n if $S_n = 21,663$

4.
$$13 + 26 + 52 + \dots$$
, find n if $S_n = 425,971$