Notes 14-3 Series and Partial Sums
A series is formed by adding the terms of a sequence.
Ex. Sequence $3,5,7,9, \ldots \quad$ Formula: $t_{n}=$

$$
\text { Series } 3+5+7+9+\ldots+t_{n}
$$

When you sum up part of the series, it is called a partial sum, S_{n}
Ex. The third partial sum is $S_{3}=3+5+7$ $S_{3}=15$

Find the $100^{\text {th }}$ partial sum, S_{100} of $3+5+7 \ldots$
$S_{100}=\sum_{n=1}^{100} 1+2 n$

Each series is either arithmetic or geometric. Find the indicated partial sum.

1. $97+131+165+\ldots$, find S_{37}
2. $1000+900+810+\ldots$, find S_{22}

The n-th partial sum of an arithmetic series is

The n-th partial sum of a geometric series is

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(t_{1}+t_{n}\right) \\
& S_{n}=t_{1} \cdot \frac{1-r^{n}}{1-r} \quad r \text { is common ratio }
\end{aligned}
$$

The series is either arithmetic or geometric. Find n for the given partial sum.
3. $97+101+105+\ldots$, find n if $S_{n}=21,663$
4. $13+26+52+\ldots$, find n if $S_{n}=425,971$

