Notes 14.3 Continued

Hannah
Alexia are 200inches away from each other. If Hannah walks $1 / 2$ the remaining distance each time towards Alexia, her steps will be of length $100,50,25,12.5,6.25, \ldots$

Will Hannah ever reach Alexia?
The total distance Hannah traveled is given by the geometric series $100+50+25+12.5+6.25$
$S_{n}=t_{1} \cdot \frac{1-r^{n}}{1-r} \quad \mathrm{r}=$
as n gets really large, S_{n} approaches a limit $\quad \lim _{n \rightarrow \infty} S_{n}=$

If $|r|<1$, the geometric series will converge.
If $|\mathrm{r}| \geq 1$, the geometric series will diverge.

If the series converges, find the limit to which it converges.

1. $25+20+16+\ldots$
2. $200-140+98+\ldots$

Remember Pascal's Triangle: If you expand the binomial series

11						row 0
						row 1
	1	2		1		row 2
	13	3	3			row 3
1	4	6	4	4	1	row 4

$$
\begin{aligned}
& \quad(a+b)^{5} \\
& 5 C 0 \cdot a^{5} b^{0}+5 C 1 \cdot a^{4} b^{1}+5 C 2 \cdot a^{3} b^{2}+5 C 3 \cdot a^{2} b^{3}+ \\
& 5 C 4 \cdot a^{1} b^{4}+5 C 5 \cdot a^{0} b^{5}
\end{aligned}
$$

Binomial Formula

$(a+b)^{n}=\sum_{r=0}^{n} n C r \cdot a^{n-r} \cdot b^{r}$

Expand.
3. $(3 x+2)^{4}$
4. Find the $4^{\text {th }}$ term of the binomial series $(a+b)^{5}$

Means it would contain $\quad b^{3} \quad$ (b is one less power than the term it is asking for)
Means it would contain $a^{2} b^{3} \quad$ since exponents add to $\mathrm{n}=5$
So $\quad 5 \mathrm{C} 3 a^{2} b^{3} \quad$ or $10 a^{2} b^{3}$
5. Find the $8^{\text {th }}$ term of the binomial series $(3-2 x)^{12}$

