Section 4-2 Pythagorean, Reciprocal and Quotient Properties

$$\sec x = \frac{1}{\cos x} \qquad \csc x = \frac{1}{\sin x} \qquad \cot x = \frac{1}{\tan x}$$

Take sin x and divide by cos x. What is the result?

$$\frac{Sihx}{COSX} = \frac{O}{H} = \frac{O}{H} \cdot \frac{H}{A} = \frac{O}{A} \rightarrow \frac{O}{A} = tan X$$

Quotient Properties

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

Pythagorean Properties

$$u = \cos x$$
 and $v = \sin x$

Using the Pythagorean Theorem

$$u^2 + v^2 = 1$$

$$\cos^2 x + \sin^2 x = 1$$

Start with $\frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ and divide both sides of equation by $\cos^2 x$

$$\tan^2 x + 1 = \sec^2 x$$

Start with
$$\frac{\sin^2 x + \cos^2 x}{\sinh^2 x} = \frac{1}{\sinh^2 x}$$
 and divide both sides of equation by $\sin^2 x$

$$1 + \cot^2 x = \csc^2 x$$

Pythagorean Properties