Section 7-4 Logarithms

We know that $2^2 = 4$ and $2^3 = 8$. However, for what value of x does $2^x = 6$?

To find the exact value, mathematicians invented *logarithms*.

Let *b* and *x* be positive numbers, $b \ne 1$. The logarithm of x with base b is

$$\log_b x = y$$
 if and only if $b^y = x$

It is read as "log base b of x".

Logarithms and Exponential Functions are inverses of each other

$$y = 2^x$$

its inverse

$$x = 2^y$$
 or $\log_2 x = y$

X	y
-2	1/4
-1	1/2
0	1
1	2
2	4

X	У
1/4	-1
1/2	-
1	0
2	1
4	2

Rewrite as an exponential function.

1.
$$\log_3 9 = 2$$

2.
$$\log_5 \frac{1}{25} = -2$$

Rewrite an a logarithm.

3.
$$4^3 = 64$$

4.
$$10^4 = 10,000$$

The log with base 10 is called the **common logarithm**. It is written $\log_{10} x$ or $\log x$. The log with base e = 2.7182...is called the <u>natural logarithm</u>. It can be written $\log_e x$ but is more often referred to as

Let b, u, and v be positive numbers such that $b \neq 1$.

Product Property

$$\log_b uv = \log_b u + \log_b v$$

Product Property 10

Example:
$$\log_5 21 = \log_5 3 + \log_5 7$$

$$\log_b \frac{u}{v} = \log_b u - \log_b v$$

Quotient Property 10
Example:
$$\log_5 \frac{3}{7} = \log_5 3 - \log_5 7$$

$$\log_b u^n = n \log_b u$$

Power Property
$$\log_b t$$

Example: $\log_5 49 = \log_5 7^2 = 2\log_5 7$

Demonstrate numerically the property of logarithms.

5.
$$\ln(7 \cdot 8) = \ln 7 + \ln 8$$

Fill in the blank.

6.
$$\log 5 + \log 8 = \log$$

7.
$$\ln 4 - \ln 20 = \ln$$

8.
$$\log 49 = \underline{\hspace{1cm}} \log 7$$

CHANGE-OF-BASE formula

$$\log_c u = \frac{\log u}{\log c}$$

$$\log_c u = \frac{\ln u}{\ln c}$$

$$\log_3 7 = \frac{\log 7}{\log 3}$$

10.
$$\log_2 6$$

11.

12.

$$\log_{1/2} 7$$

Solve.

13.
$$4^x = 15$$

14.
$$3^{4x} = 27^{x+1}$$

15.
$$\log_5(x+6) + \log_5(x+2) = 1$$

$$\log_5(x+6) + \log_5(x+2) = 1$$
 16. $\log_2(2x-1) - \log_2(x+2) = -1$

17.
$$e^{2x} - 3e^x + 2 = 0$$