Section 9-1 and 9-2 Probability

Random Experiment - act of doing something and there is no way of telling beforehand how the result will come out.

If the outcomes of a random experiment are equally likely, then
Probability $=$ \qquad number of outcomes in the event (\# of successes) total number of possibilities (sample space)
symbolically: $\quad P(E)=\frac{n(E)}{n(S)}$

Cards (52 card deck, 13 each of diamonds, hearts, clubs and spades) Face cards: jack, queen, king
$1 \quad \mathrm{P}(\mathrm{jack})$
3. P (red card)
5. $\mathrm{P}(2$ or 5$)$

Dice (rolling 2 dice)
Sample space $=$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$\mathbf{2}$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$\mathbf{6}$	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

7. $\mathrm{P}($ sum of 5$)$
8. P (doubles)
9. $\mathrm{P}($ sum of 13$)$
10. P (sum of 7)
11. $\mathrm{P}($ sum of 2$)$
12. P (sum is at most 8)
