Section 9-8 Mathematical Expectation

At a school carnival, students are awarded points for winning games. At the end of the evening, they may trade in points for prizes. You roll a single die. (game is 50 points to play) Payoffs are:

Number	Probability	Points won(payoff)	Mathematical Expectation
1	$1 / 6$	-50	
2	$1 / 6$	10	
3	$1 / 6$	-50	
4	$1 / 6$	10	
5	$1 / 6$	-50	
6	$1 / 6$	100	

This is why some games are rigged at carnivals and casinos!

Mathematical Expectation

is found by multiplying the probability by the payoff and adding them.
$\mathrm{E}=\sum P\left(A_{1}\right) a_{1}+P\left(A_{2}\right) a_{2}+P\left(A_{3}\right) a_{3}+P\left(A_{4}\right) a_{4} \ldots P\left(A_{n}\right) a_{n}$

- For the mutually exclusive events $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ in the experiment.
- The values $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ correspond to the outcomes of $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$

It is the weighted average for a random experiment each time it is run.

Skeeball
$P(10)=0.5$
$P(20)=0.25$
$P(30)=0.15$
$P(40)=0.07$
$P(50)=0.03$

E
$\mathrm{P}(10)=0.5$
$\mathrm{P}(20)=0.25$
$\mathrm{P}(30)=0.15$
$\mathrm{P}(40)=0.07$
$\mathrm{P}(50)=0.03$

