Chapter 14 Sequences and Series

Arithmetic and Geometric Sequences and Other Sequences

Find the next 3 terms of each sequence.

A Formula:
$$t_n = 3 + 2(n-1)$$

G Formula:
$$t_n = t_0 \star 2^{(n-1)}$$

& Formula:
$$t_n = 3 * 3^{(n-1)}$$

A Formula:
$$t_n = 5 + (-7)(n-1)$$

A <u>sequence</u> is function whose domain is the set of positive integers. n is the term number and t_n is the term value. (ex #1: the 1st term is 3 so n = 1 and $t_n = 3$)

Arithmetic sequence—each term is formed by adding a constant to the previous term. (the constant is called the common difference) $t_n = t_1 + d(n-1)$ or $t_n = t_0 + dn$

Geometric sequence—each term is formed by multiplying the previous term by a constant

(called the common ratio) $t_n = t_1 * r (n-1)$ or $t_n = t_0 * r n$ Recursive formula: $t_n = t_{n-1} + d$ or $t_n = t_{n-1} * r$

b) Find the term number, n, that 105 is in the sequence 3, 5, 7, ...

$$105 = 3 + 2(n-1)$$
 $51 = n-1$
 $52 = n$

6. a) Find the 100th term, t_{100} , of the sequence 6, 12, 24, ... r=2 $\begin{array}{c}
t_{100} = 6 \times 2^{(100-1)} \\
t_{100} = 3.8 \times 10^{30}
\end{array}$

$$t_{100} = 6 \times 2^{(100-1)}$$

$$t_{100} = 3.8 \times 10^{30}$$

b) Find the term number, n, that 786,432 is in the sequence $6, 12, 24, \dots$

$$786,432 = 6 \times 2^{n-1}$$

$$131,072 = 2^{n-1}$$

$$\log 131,072 = (n-1)\log 2$$

$$\log 131,072 = n-1$$

$$\log 2$$

$$17 = n-1$$

$$\log 2$$

7. You have \$40 saved for something. You take on a part-time job that pays \$13 per day. Each day you keep track of how much you have.

Days (n)	$\$$ or t_n		
1	53 \ 1/2		
2	66 113		
3	79		
4	92		

a) What kind of sequence is this? Arithmetic

b) How much money would you have after 3 months? Assuming 30 days per month use n = 90. How long would it take to save \$5000? 5000 = 53 + 13(n-1)

$$5000 = 53 + 13(n-1)$$

 $380.54 = n-1$ $n = 381.54 \approx 382 days$

8. When you leave money in a savings account, the interest is compounded. Let's say you put \$1000 in an account for your baby when it is born and the interest is 6% per year (compounded once a year).

a) What kind of sequence is this? Write a formula.
$$t_n = 1000 + 1.06^{\circ}$$

b) Find the first 3 terms.

$$t_1 = 1060$$
 $t_2 = 1123.60$ $t_3 = 1191.02$

c) How much money would there be saved on the 18th birthday?

$$t_n = 1000 \times 1.06^{18}$$
 2854.34

d) When would that person have \$10,000 saved?

$$10,000 = 1000 \pm 1.06^{\circ}$$

$$\frac{10910}{1091.06} = n$$

$$\approx 40 \text{ years}$$

Type of sequence: Geometric, arithmetic or neither?

n	t_n		Δ.		1.0
1	. 6	12 = 2	20 ±2	not Ge	cometric
2	12	6	12		
3	20		12 / /	not	Arithm
4	30	12-le = le	20-12 76	o rice	
5	42				