9-6 Properties of Probability

1. You draw 2 cards from the deck of 52 without replacing the first card before you draw the second. What is the probability that both cards will be red?

 $\frac{26}{52} \times \frac{25}{51} = \frac{650}{2652} = \frac{25}{102}$

You draw 2 cards from the deck and replace the first card before you draw the second. What is the probability that both cards will be red?

$$\frac{26}{52} * \frac{26}{52} = \boxed{\frac{1}{4}}$$

Intersection of Events

 $P(A \text{ and } B) = P(A \cap B) = P(A) \cdot P(B|A)$ if two events are dependent (do not replace)

 $P(A \text{ and } B) = P(A \cap B) = P(A) \cdot P(B)$ if two events are independent

3. A cookie container has 10 chocolate chip cookies, 11 macadamia nut, 12 oatmeal and 7 oatmeal-chocolate. If you select 1 cookie at random, what is the probability:

a) it will be contain oatmeal or chocolate?

$$\frac{19}{40} + \frac{17}{40} - \frac{7}{40} = \begin{bmatrix} \frac{29}{40} \end{bmatrix}$$

b) it will be macadamia or chocolate chip?
$$\frac{11}{40} + \frac{10}{40} = \begin{bmatrix} 21\\40 \end{bmatrix}$$

Union of Events

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$ if two events have no intersection

4. Calvin and Phoebe volunteer in the children's ward of a hospital. The probability that Calvin gets mumps as the result of a visit is P(C) = 13% and the probability that Phoebe gets mumps is P(Ph) = 7%. Find the probability of each event.

Both catch mumps
$$.13 \times .07 = [.0091 0.91 0.91]$$

b) Calvin does not catch mumps

c) Phoebe does not catch mumps

d) Neithe

ther Calvin nor Phoebe catches mumps	.87 × .	93	-	. 8091	0 80,91%
not Calvin & not Phoebe					

At least one of them catches mumps

Complementary Events

The probability that event A will not occur is P(not A) = 1 - P(A)

Drew has these probabilities of passing various classes: Physics 90%, PreCalc 95%, and Spanish 80%. Find the probability of each event.

a) Passing all three
$$9 \pm 95 \pm 8 = .684$$
 or 68.4%

a) Passing all three
$$9 \pm .95 \pm .8 = .684$$
 or 68.4%
b) failing all three $.10 \pm .05 \pm .2 = .001$ or 0.1%

d) passing exactly one Physics (not PC
$$\alpha$$
 S) =

or PC (not Ph α S) =

or S (not PC α Ph) =