Section 9-8 Mathematical Expectation

At a school carnival, students are awarded points for winning games. At the end of the evening, they may trade in points for prizes. You roll a single die. (game is 50 points to play) Pavoffs are:

Number	Probability	Points won(payoff)
1	1/6	-50
2	1/6	10
3	1/6	-50
4	1/6	10
5	1/6	-50
6	1/6	100

* means "on average" for each roll you can expect to get -4.89 pts.

This is why some games are rigged at carnivals and casinos!

Mathematical Expectation
$$\frac{1}{16}(-50) = -8.3$$

$$\frac{1}{16}(10) = -8.3$$

$$\frac{1}{16}(-50) = -8.3$$

Mathematical Expectation

is found by multiplying the probability by the payoff and adding them.

$$E = \sum P(A_1)a_1 + P(A_2)a_2 + P(A_3)a_3 + P(A_4)a_4 \dots P(A_n)a_n$$

- For the mutually exclusive events $A_1, A_2, A_3, ..., A_n$ in the experiment.
- The values $a_1, a_2, a_3, ..., a_n$ correspond to the outcomes of $A_1, A_2, A_3, ..., A_n$

It is the weighted average for a random experiment each time it is run.

Skeeball	E
P(10) = 0.5	.5(10) = 5
P(20) = 0.25	. 25 (20) = 5
P(30) = 0.15	. 15 (30) = 4,5 +
P(40) = 0.07	. 07(40) = 2.8
P(50) = 0.03	.03(50) = 1.5
	18.8

